Part Number Hot Search : 
55000 05D15 88E11 TPS56300 CSNE33 B2005RU B2003RU SURFA
Product Description
Full Text Search
 

To Download MX25L512 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MX25L512
512K-BIT [x 1] CMOS SERIAL FLASH
FEATURES
GENERAL * Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3 * 524,288 x 1 bit structure * 16 Equal Sectors with 4K byte each - Any Sector can be erased individually * Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations * Latch-up protected to 100mA from -1V to Vcc +1V PERFORMANCE * High Performance - Fast access time: 85MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load) - Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page) - Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/chip(512Kb) * Low Power Consumption - Low active read current: 12mA(max.) at 85MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz - Low active programming current: 15mA (max.) - Low active erase current: 15mA (max.) - Low standby current: 10uA (max.) - Deep power-down mode 1uA (typical) * Minimum 100,000 erase/program cycles SOFTWARE FEATURES * Input Data Format - 1-byte Command code * Block Lock protection - The BP0~BP1 status bit defines the size of the area to be software protected against Program and Erase instructions. * Auto Erase and Auto Program Algorithm
program pulse widths (Any page to be programed should have page in the erased state first) * Status Register Feature * Electronic Identification
- Automatically erases and verifies data at selected sector - Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
- JEDEC 2-byte Device ID
HARDWARE FEATURES * SCLK Input
- RES command, 1-byte Device ID
- Serial clock input
P/N: PM1214 REV. 1.6, FEB. 17, 2009
1
MX25L512
* SI Input * SO Output
- Serial Data Input
- Serial Data Output * WP# pin
* HOLD# pin
- Hardware write protection
- pause the chip without diselecting the chip * PACKAGE - 8-pin SOP (150mil) - 8-USON (2x3mm)
- All Pb-free devices are RoHS Compliant
GENERAL DESCRIPTION
MX25L512 is a CMOS 524,288 bit serial Flash memory, which is configured as 65,536 x 8 internally. MX25L512 features a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device is enabled by CS# input. MX25L512 provide sequential read operation on whole chip. After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase command is executes on chip or sector (4K-bytes). To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit. When the device is not in operation and CS# is high, it is put in standby mode and draws less than 10uA DC current. The MX25L512 utilize MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles.
P/N: PM1214
2
REV. 1.6, FEB. 17, 2009
MX25L512
PIN CONFIGURATIONS
8-PIN SOP (150mil)
PIN DESCRIPTION
SYMBOL CS# SI SO SCLK HOLD# WP# VCC GND DESCRIPTION Chip Select Serial Data Input Serial Data Output Clock Input Hold, to pause the device without deselecting the device Write Protection + 3.3V Power Supply Ground
CS# SO WP# GND
1 2 3 4
8 7 6 5
VCC HOLD# SCLK SI
8-LAND USON (2x3mm)
CS# SO WP# GND
1 2 3 4
8 7 6 5
VCC HOLD# SCLK SI
P/N: PM1214
3
REV. 1.6, FEB. 17, 2009
MX25L512
BLOCK DIAGRAM
Address Generator
X-Decoder
Memory Array
Page Buffer SI Data Register Y-Decoder SRAM Buffer Mode Logic State Machine Sense Amplifier
HV Generator
CS#
Output Buffer
SO SCLK Clock Generator
P/N: PM1214
4
REV. 1.6, FEB. 17, 2009
MX25L512
DATA PROTECTION
MX25L512 is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the standby mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise. * Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary. * Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other command to change data. The WEL bit will return to reset stage under following situation: - Power-up - Write Disable (WRDI) command completion - Write Status Register (WRSR) command completion - Page Program (PP) command completion - Sector Erase (SE) command completion - Block Erase (BE) command completion - Chip Erase (CE) command completion * * Software Protection Mode (SPM): by using BP0-BP1 bits to set the part of Flash protected from data change. Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP1 bits and SRWD bit from data change. Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES).
*
P/N: PM1214
5
REV. 1.6, FEB. 17, 2009
MX25L512
Table 1. Protected Area Sizes BP1 0 0 1 1 Status bit BP0 0 1 0 1 Protect level 0 (none) 1 (All) 2 (All) 3 (All) 512b None All All All
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation of write status register, programming, or erasing in progress. The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1.
Figure 1. Hold Condition Operation
CS#
SCLK
HOLD#
Hold Condition (standard)
Hold Condition (non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1214
6
REV. 1.6, FEB. 17, 2009
MX25L512
Table 2. COMMAND DEFINITION COMMAND WREN (write WRDI (write RDID (read (byte) enable) disable) identification) 1st 2nd 3rd 4th 5th Action 06 (hex) 04 (hex) 9F (hex) RDSR (read WRSR Fast Read READ status (write status (fast read (read data) register) register) data) 05 (hex) 01 (hex) 03 (hex) 0B (hex) AD1 AD1 AD2 AD2 AD3 AD3 x to read out to write new n bytes read the status values to the out until CS# register status register goes high
sets the (WEL) resets the write enable (WEL) write latch bit enable latch bit
outputs manufacturer ID and 2-byte device ID
COMMAND SE(Sector (byte) Erase)
BE (2) (Block Erase) 52 or D8 (hex) AD1 AD2 AD3
CE (Chip Erase) 60 or C7 (hex)
RDP REMS (Read DP(Deep (Release RES (Read PP(Page Electronic Power from Deep Electronic Program) Manufacturer Down) PowerID) & Device ID) down) 02 (hex) AD1 AD2 AD3 B9 (hex) AB (hex) AB (hex) x x x 90 (hex) x x ADD(1) Output the manufacturer ID and device ID
1st 2nd 3rd 4th 5th Action
20 (hex) AD1 AD2 AD3
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first. (2) BE command may erase whole 512Kb chip. (3) It is not recommended to adopt any other code which is not in the above command definition table.
P/N: PM1214
7
REV. 1.6, FEB. 17, 2009
MX25L512
Table 3. Memory Organization
Sector 15 : 3 2 1 0 Address Range 00F000h 00FFFFh : : 003000h 003FFFh 002000h 002FFFh 001000h 001FFFh 000000h 000FFFh
DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation. 2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. 3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge. 4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The difference of SPI mode 0 and mode 3 is shown as Figure 2. 5. For the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase. Figure 2. SPI Modes Supported
CPOL (Serial mode 0) 0 CPHA 0 SCLK shift in shift out
(Serial mode 3)
1
1
SCLK
SI
MSB
SO
MSB
Note: CPOL indicates clock polarity of SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which SPI mode is supported.
P/N: PM1214
8
REV. 1.6, FEB. 17, 2009
MX25L512
COMMAND DESCRIPTION
(1) Write Enable (WREN) The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit. The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see Figure 11) (2) Write Disable (WRDI) The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit. The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure 12) The WEL bit is reset by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion
(3) Read Identification (RDID) RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of second-byte ID is as followings: 10(hex) for MX25L512. The sequence of issuing RDID instruction is: CS# goes lowsending RDID instruction code24-bits ID data out on SOto end RDID operation can use CS# to high at any time during data out. (see Figure. 13) While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1214
9
REV. 1.6, FEB. 17, 2009
MX25L512
(4) Read Status Register (RDSR) The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. The sequence of issuing RDSR instruction is: CS# goes lowsending RDSR instruction codeStatus Register data out on SO (see Figure. 14) The definition of the status register bits is as below: WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle. WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/ erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. BP1, BP0 bits. The Block Protect (BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be executed) SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP1, BP0) are read only. bit7 SRWD (status register write protect) 1=status register write disable bit6 0 bit5 0 bit4 0 bit3 BP1 (level of protected block) (note 1) bit2 BP0 (level of protected block) (note 1) bit1 bit0
WEL WIP (write enable (write in latch) progress bit) 1=write 1=write enable operation 0=not write 0=not in write enable operation
Note: 1. See the table "Protected Area Sizes". 2. The endurance cycles of protect bits are 100,000 cycles; however, the tW time out spec of protect bits is relaxed as tW = N x 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles on those bits.
P/N: PM1214
10
REV. 1.6, FEB. 17, 2009
MX25L512
(5) Write Status Register (WRSR) The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP1, BP0) bits to define the protected area of memory (as shown in table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered. The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data on SI-> CS# goes high. (see Figure 15) The WRSR instruction has no effect on b6, b5, b4, b1, b0 of the status register. The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset. Table 4. Protection Modes Mode Software protection mode (SPM) Status register condition Status register can be written in (WEL bit is set to "1") and the SRWD, BP0-BP1 bits can be changed The SRWD, BP0-BP1 of status register bits cannot be changed WP# and SRWD bit status WP#=1 and SRWD bit=0, or WP#=0 and SRWD bit=0, or WP#=1 and SRWD=1 WP#=0, SRWD bit=1 Memory The protected area cannot be program or erase. The protected area cannot be program or erase.
Hardware protection mode (HPM)
Note: 1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 1. As the table above showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM). Software Protected Mode (SPM): - When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values of SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM). - When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM)
P/N: PM1214
11
REV. 1.6, FEB. 17, 2009
MX25L512
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been set. It is rejected to write the Status Register and not be executed. Hardware Protected Mode (HPM): - When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP1, BP0 and hardware protected mode by the WP# to against data modification. Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software protected mode via BP1, BP0. (6) Read Data Bytes (READ) The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing READ instruction is: CS# goes low sending READ instruction code 3-byte address on SI data out on SO to end READ operation can use CS# to high at any time during data out. (see Figure. 16) (7) Read Data Bytes at Higher Speed (FAST_READ) The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing FAST_READ instruction is: CS# goes low sending FAST_READ instruction code 3-byte address on SI 1-dummy byte address on SIdata out on SO to end FAST_READ operation can use CS# to high at any time during data out. (see Figure. 17) While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. (8) Sector Erase (SE) The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Address bits [Am-A12] (Am is the most significant address) select the sector address. The sequence of issuing SE instruction is: CS# goes low sending SE instruction code 3-byte address on SI CS# goes high. (see Figure 19)
P/N: PM1214
12
REV. 1.6, FEB. 17, 2009
MX25L512
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page. (9) Block Erase (BE) The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE instruction is: CS# goes low sending BE instruction code 3-byte address on SI CS# goes high. (see Figure 20) The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page. (10) Chip Erase (CE) The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table 3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing CE instruction is: CS# goes low sending CE instruction code CS# goes high. (see Figure 20) The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP1, BP0 all set to "0". (11) Page Program (PP) The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed from the start address if the same page (from the address whose 8 least significant address bits (A7A0) are all 0). The CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page without effect on other address of the same page. The sequence of issuing PP instruction is: CS# goes low sending PP instruction code 3-byte address on SI
P/N: PM1214
13
REV. 1.6, FEB. 17, 2009
MX25L512
at least 1-byte on data on SI CS# goes high. (see Figure 18) The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
(12) Deep Power-down (DP) The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's different from Standby mode. The sequence of issuing DP instruction is: CS# goes low sending DP instruction code CS# goes high. (see Figure 22) Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Powerdown, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2. (13) Release from Deep Power-down (RDP), Read Electronic Signature (RES) The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/ write cycle in progress. The sequence is shown as Figure 23,24. The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction. The RDP instruction is for releasing from Deep Power Down Mode.
P/N: PM1214
14
REV. 1.6, FEB. 17, 2009
MX25L512
(14) Read Electronic Manufacturer ID & Device ID (REMS) The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.
Table of ID Definitions: RDID Command RES Command REMS Command manufacturer ID C2 manufacturer ID C2 memory type 20 electronic ID 05 device ID 05 memory density 10
P/N: PM1214
15
REV. 1.6, FEB. 17, 2009
MX25L512
POWER-ON STATE
The device is at below states when power-up: - Standby mode ( please note it is not deep power-down mode) - Write Enable Latch (WEL) bit is reset The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level: - VCC minimum at power-up stage and then after a delay of tVSL - GND at power-down Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level. An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during power up state. For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The read, write, erase, and program command should be sent after the below time delay: - tVSL after VCC reached VCC minimum level The device can accept read command after VCC reached VCC minimum and a time delay of tVSL. Please refer to the figure of "power-up timing". Note: - To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended.(generally around 0.1uF)
P/N: PM1214
16
REV. 1.6, FEB. 17, 2009
MX25L512
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS RATING Ambient Operating Temperature Storage Temperature Applied Input Voltage Applied Output Voltage VCC to Ground Potential Industrial grade Commercial grade VALUE -40C to 85C 0C to 70C -55C to 125C -0.5V to 4.6V -0.5V to 4.6V -0.5V to 4.6V
NOTICE: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. 2. Specifications contained within the following tables are subject to change. 3. During voltage transitions, all pins may overshoot to 4.6V or -0.5V for period up to 20ns. 4. All input and output pins may overshoot to VCC+0.5V while VCC+0.5V is smaller than or equal to 4.6V.
Figure 3.Maximum Negative Overshoot Waveform
20ns
Figure 4. Maximum Positive Overshoot Waveform
4.6V 3.6V
20ns
0V -0.5V
CAPACITANCE TA = 25C, f = 1.0 MHz SYMBOL PARAMETER CIN COUT Input Capacitance Output Capacitance MIN. TYP MAX. 6 8 UNIT pF pF CONDITIONS VIN = 0V VOUT = 0V
P/N: PM1214
17
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing referance level 0.8VCC 0.7VCC 0.3VCC AC Measurement Level Output timing referance level
0.5VCC
0.2VCC
Note: Input pulse rise and fall time are <5ns
Figure 6. OUTPUT LOADING
DEVICE UNDER TEST
2.7K ohm
+3.3V
CL
6.2K ohm
DIODES=IN3064 OR EQUIVALENT
CL=30pF Including jig capacitance (CL=15pF Including jig capacitance for 70MHz)
P/N: PM1214
18
REV. 1.6, FEB. 17, 2009
MX25L512
Table 5. DC CHARACTERISTICS (Temperature = -40C to 85C for Industrial grade, Temperature = 0C to 70C for Commercial grade, VCC = 2.7V ~ 3.6V) SYMBOL ILI ILO ISB1 ISB2 PARAMETER Input Load Current Output Leakage Current VCC Standby Current Deep Power-down Current NOTES 1 1 1 1 MIN. TYP. UNITS TEST CONDITIONS VCC = VCC Max 2 uA VIN = VCC or GND VCC = VCC Max 2 uA VIN = VCC or GND VIN = VCC or GND 10 uA CS#=VCC VIN = VCC or GND 5 uA CS#=VCC f=85MHz 12 mA SCLK=0.1VCC/0.9VCC, SO=Open f=66MHz 8 mA SCLK=0.1VCC/0.9VCC, SO=Open f=33MHz 4 mA SCLK=0.1VCC/0.9VCC, SO=Open Program in Progress 15 mA CS#=VCC Program status register in 15 mA progress CS#=VCC Erase in Progress 15 mA CS#=VCC Erase in Progress 15 mA CS#=VCC 0.3VCC V VCC+0.4 V 0.4 V IOL = 1.6mA V IOH = -100uA MAX.
ICC1
VCC Read
1
ICC2 ICC3 ICC4 ICC5 VIL VIH VOL VOH
VCC Program Current (PP) VCC Write Status Register (WRSR) Current VCC Sector Erase Current (SE) VCC Chip Erase Current (CE) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
1
1 1 -0.5 0.7VCC VCC-0.2
Notes : 1. Typical values at VCC = 3.3V, T = 25C. These currents are valid for all product versions (package and speeds). 2. Typical value is calculated by simulation.
P/N: PM1214
19
REV. 1.6, FEB. 17, 2009
MX25L512
Table 6. AC CHARACTERISTICS (Temperature = -40C to 85C for Industrial grade, Temperature = 0C to 70C for Commercial grade, VCC = 2.7V ~ 3.6V) Symbol Alt. fSCLK fRSCLK tCH(1) tCL(1) tCLCH(2) tCHCL(2) tSLCH tCHSL tDVCH tCHDX tCHSH tSHCH tSHSL tSHQZ(2) tCLQV tCLQX tHLCH tCHHH tHHCH tCHHL tHHQX(2) tHLQZ(2) tWHSL(4) tSHWL(4) tDP(2) tRES1(2) tRES2(2) tW tPP tSE tBE tCE fC Parameter Clock Frequency for the following instructions: FAST_READ, PP, SE, BE, CE, DP, RES,RDP WREN, WRDI, RDID, RDSR, WRSR Min. Typ. 1KHz 1KHz 5.5 5.5 0.1 0.1 5 5 2 5 5 5 100 Max. 85 (Condition:15pF) 66 (Condition:30pF) 33 Unit MHz MHz MHz ns ns V/ns V/ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns us us us ms ms ms s s
fR Clock Frequency for READ instructions tCLH Clock High Time tCLL Clock Low Time Clock Rise Time (3) (peak to peak) Clock Fall Time (3) (peak to peak) tCSS CS# Active Setup Time (relative to SCLK) CS# Not Active Hold Time (relative to SCLK) tDSU Data In Setup Time tDH Data In Hold Time CS# Active Hold Time (relative to SCLK) CS# Not Active Setup Time (relative to SCLK) tCSH CS# Deselect Time tDIS Output Disable Time @33MHz 30pF tV Clock Low to Output Valid @85MHz 15pF or @66MHz 30pF tHO Output Hold Time HOLD# Setup Time (relative to SCLK) HOLD# Hold Time (relative to SCLK) HOLD Setup Time (relative to SCLK) HOLD Hold Time (relative to SCLK) tLZ HOLD to Output Low-Z tHZ HOLD# to Output High-Z Write Protect Setup Time Write Protect Hold Time CS# High to Deep Power-down Mode CS# High to Standby Mode without Electronic Signature Read CS# High to Standby Mode with Electronic Signature Read Write Status Register Cycle Time Page Program Cycle Time Sector Erase Cycle Time Block Erase Cycle Time Chip Erase Cycle Time
6 8 6
0 5 5 5 5
20 100
6 6
3 3 5 1.4 60 1 1 1.8 15 5 120 2 2
Note: 1. tCH + tCL must be greater than or equal to 1/ fC 2. Value guaranteed by characterization, not 100% tested in production. 3. Expressed as a slew-rate. 4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1. 5. Test condition is shown as Figure 3.
P/N: PM1214
20
REV. 1.6, FEB. 17, 2009
MX25L512
Table 7. Power-Up Timing Symbol tVSL(1) Parameter VCC(min) to CS# low Min. 10 Max. Unit us
Note: 1. The parameter is characterized only.
INITIAL DELIVERY STATE The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0).
P/N: PM1214
21
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 7. Serial Input Timing
tSHSL CS# tCHSL SCLK tDVCH tCHDX SI MSB tCLCH LSB tCHCL tSLCH tCHSH tSHCH
SO
High-Z
Figure 8. Output Timing
CS# tCH SCLK tCLQV tCLQX SO tQLQH tQHQL SI
ADDR.LSB IN
tCLQV
tCL
tSHQZ
LSB
P/N: PM1214
22
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 9. Hold Timing
CS# tHLCH tCHHL SCLK tCHHH tHLQZ SO tHHQX tHHCH
HOLD#
* SI is "don't care" during HOLD operation.
Figure 10. WP# Disable Setup and Hold Timing during WRSR when SRWD=1
WP# tWHSL CS# 0 SCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14
tSHWL
15
SI High-Z
01
SO
P/N: PM1214
23
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 11. Write Enable (WREN) Sequence (Command 06)
CS# 0 SCLK Command SI 06 High-Z 1 2 3 4 5 6 7
SO
Figure 12. Write Disable (WRDI) Sequence (Command 04)
CS# 0 SCLK Command SI 04 High-Z 1 2 3 4 5 6 7
SO
Figure 13. Read Identification (RDID) Sequence (Command 9F)
CS# 0 SCLK Command SI 9F Manufacturer Identification SO High-Z 7 MSB 6 5 3 2 1 Device Identification 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31
0 15 14 13 MSB
P/N: PM1214
24
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 14. Read Status Register (RDSR) Sequence (Command 05)
CS# 0 SCLK command SI High-Z SO 7 MSB 05 Status Register Out 6 5 4 3 2 1 0 7 MSB Status Register Out 6 5 4 3 2 1 0 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 15. Write Status Register (WRSR) Sequence (Command 01)
CS# 0 SCLK command Status Register In 7 MSB 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SI
01 High-Z
SO
Figure 16. Read Data Bytes (READ) Sequence (Command 03)
CS# 0 SCLK command 24-Bit Address 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
SI
03
23 22 21 MSB
3
2
1
0 Data Out 1 7 6 5 4 3 2 1 0 Data Out 2 7
High-Z SO
MSB
P/N: PM1214
25
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B)
CS# 0 SCLK Command 24 BIT ADDRESS 1 2 3 4 5 6 7 8 9 10 28 29 30 31
SI
0B High-Z
23 22 21
3
2
1
0
SO
CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Byte
SI
7
6
5
4
3
2
1
0 DATA OUT 1 DATA OUT 2 1 0 7 MSB 6 5 4 3 2 1 0 7 MSB
SO
7 MSB
6
5
4
3
2
P/N: PM1214
26
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 18. Page Program (PP) Sequence (Command 02)
CS# 0 SCLK Command 24-Bit Address Data Byte 1 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
SI
02
23 22 21 MSB
3
2
1
0
7
6
5
4
3
2
1
0
MSB
CS# 2072 2073 2074 2075 2076 2077 2 2078 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCLK Data Byte 2 Data Byte 3 Data Byte 256 2079 0
REV. 1.6, FEB. 17, 2009
SI
7
6
5
4
3
2
1
0
7 MSB
6
5
4
3
2
1
0
7
6
5
4
3
MSB
MSB
P/N: PM1214
27
MX25L512
Figure 19. Sector Erase (SE) Sequence (Command 20)
CS# 0 SCLK Command 24 Bit Address 1 2 3 4 5 6 7 8 9 29 30 31
SI
20
7 MSB
6
2
1
0
Note: SE command is 20(hex).
Figure 20. Block Erase (BE) Sequence (Command 52 or D8)
CS# 0 SCLK Command 24 Bit Address 1 2 3 4 5 6 7 8 9 29 30 31
SI
52 or D8
23 22 MSB
2
1
0
Note: BE command is 52 or D8(hex).
P/N: PM1214
28
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 21. Chip Erase (CE) Sequence (Command 60 or C7)
CS# 0 SCLK Command SI 60 or C7 1 2 3 4 5 6 7
Note: CE command is 60(hex) or C7(hex).
Figure 22. Deep Power-down (DP) Sequence (Command B9)
CS# 0 SCLK Command SI B9 Stand-by Mode Deep Power-down Mode 1 2 3 4 5 6 7 tDP
Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)
CS# 0 SCLK Command 3 Dummy Bytes tRES2 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38
SI
AB High-Z
23 22 21 MSB
3
2
1
0 Electronic Signature Out 7 MSB Deep Power-down Mode Stand-by Mode 6 5 4 3 2 1 0
SO
P/N: PM1214
29
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 24. Release from Deep Power-down (RDP) Sequence (Command AB)
CS# 0 SCLK Command SI AB High-Z 1 2 3 4 5 6 7 tRES1
SO
Deep Power-down Mode
Stand-by Mode
Figure 25. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)
CS# 0 SCLK Command 2 Dummy Bytes 1 2 3 4 5 6 7 8 9 10
SI
90 High-Z
15 14 13
3
2
1
0
SO
CS# 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK ADD (1)
SI
7
6
5
4
3
2
1
0 Manufacturer ID Device ID 0 7 MSB 6 5 4 3 2 1 0 7 MSB
SO
X
7 MSB
6
5
4
3
2
1
Notes: (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1214
30
REV. 1.6, FEB. 17, 2009
MX25L512
Figure 26. Power-up Timing
VCC VCC(max) Chip Selection is Not Allowed VCC(min) tVSL Device is fully accessible
time
P/N: PM1214
31
REV. 1.6, FEB. 17, 2009
MX25L512
RECOMMENDED OPERATING CONDITIONS
At Device Power-Up AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.
VCC
VCC(min) GND tVR tSHSL
CS#
tCHSL tSLCH tCHSH tSHCH
SCLK
tDVCH tCHDX tCLCH LSB IN tCHCL
SI
MSB IN
SO
High Impedance
Figure A. AC Timing at Device Power-Up
Symbol tVR
Parameter VCC Rise Time
Notes 1
Min. 0.5
Max. 500000
Unit us/V
Notes : 1. Sampled, not 100% tested. 2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC CHARACTERISTICS" table.
P/N: PM1214
32
REV. 1.6, FEB. 17, 2009
MX25L512
ERASE AND PROGRAMMING PERFORMANCE
PARAMETER Write Status Register Cycle Time Sector erase Time Block erase Time Chip Erase Time Page Program Time Erase/Program Cycle Min. TYP. (1) 5 60 1 1 1.4 Max. (2) 15 120 2 2 5 UNIT ms ms s s ms cycles
100,000
Note: 1. Typical program and erase time assumes the following conditions: 25C, 3.3V, and checker board pattern. 2. Under worst conditions of 85C and 2.7V. 3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
LATCH-UP CHARACTERISTICS
Input Voltage with respect to GND on ACC Input Voltage with respect to GND on all power pins, SI, CS# Input Voltage with respect to GND on SO Current Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time. MIN. -1.0V -1.0V -1.0V -100mA MAX. 12.5V 2 VCCmax VCC + 1.0V +100mA
P/N: PM1214
33
REV. 1.6, FEB. 17, 2009
MX25L512
ORDERING INFORMATION
PART NO. MX25L512MC-12G MX25L512MI-12G MX25L512ZUI-12G CLOCK OPERATING STANDBY CURRENT Temperature PACKAGE (MHz) CURRENT MAX. (mA) MAX. (uA) 8-SOP 85 12 10 0~70C (150mil) 8-SOP 85 12 10 -40~85C (150mil) 8-USON 85 12 10 -40~85C (2x3mm) Remark Pb-free Pb-free Pb-free
P/N: PM1214
34
REV. 1.6, FEB. 17, 2009
MX25L512
PART NAME DESCRIPTION MX 25 L 512 M I 12 G
OPTION: G: Pb-free blank: normal SPEED: 12: 85MHz TEMPERATURE RANGE: I: Industrial (-40 to 85 ) C: Commercial (0 to 70 ) PACKAGE: M: 150mil 8-SOP ZU: 2x3mm 8-USON
DENSITY & MODE: 512: 512Kb
TYPE: L: 3V DEVICE: 25: Serial Flash
P/N: PM1214
35
REV. 1.6, FEB. 17, 2009
MX25L512
PACKAGE INFORMATION
P/N: PM1214
36
REV. 1.6, FEB. 17, 2009
MX25L512
P/N: PM1214
37
REV. 1.6, FEB. 17, 2009
MX25L512
REVISION HISTORY
Revision No. Description 1.0 1. Modified read current:6mA@85MHz/4mA@66MHz/2mA@33MHz 12mA@85MHz/8mA@66MHz/4mA@33MHz 2. Modified tSE:90ms(typ)/270ms(max)60ms(typ)/120ms(max) ; tBE:3s(max)2s(max); tCE:3s(max)2s(max) 3. Added description about Pb-free device is RoHS compliant 4. Removed "Advanced Information" title 5. Added C-grade part number 1.1 1. Format change 2. Supplemented the footnote for tW of protect/unprotect bits 1.2 1. Added statement 1.3 1. Defined min. clock frequency of fSCLK & fRSCLK as 1KHz 1.4 1. Removed 8-land SON package and order information 1.5 1. Removed wrong Block Protect bit: BP2 2. Removed non Pb-free EPN 1.6 1. Modified Figure 13, 14, 16, 17, 23 (waveform) 2. Added 8-USON package 3. Removed "Low Vcc write inhibit" function 4. Changed tCH/tCL spec from 7/7(ns) to 5.5/5.5(ns) Page P1,18,33 P1,19,32 P1 P1 P33 All JUN/08/2006 P9 P38 NOV/06/2006 P20 NOV/30/2006 P2,3,34,35 MAR/24/2008 P5,11 AUG/12/2008 P34,35 P24,25,26,29 FEB/17/2009 P3,34,37 P1,5,16,21,31 P20 Date OCT/03/2005
P/N: PM1214
38
REV. 1.6, FEB. 17, 2009
MX25L512
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which the failure of a single component could cause death, personal injury, severe physical damage, or other substantial harm to persons or property, such as life-support systems, high temperature automotive, medical, aircraft and military application. Macronix and its suppliers will not be liable to you and/or any third party for any claims, injuries or damages that may be incurred due to use of Macronix's products in the prohibited applications. Copyright(c) Macronix International Co. Ltd. 2005~2009. All Rights Reserved. Macronix, MXIC, MXIC Logo, MX Logo, are trademarks or registered trademarks of Macronix International Co., Ltd.. The names and brands of other companies are for identification purposes only and may be claimed as the property of the respective companies.
MACRONIX INTERNATIONAL CO., LTD.
Macronix Offices : Taiwan
Headquarters, FAB2 Macronix, International Co., Ltd.
Macronix Offices : Japan
Macronix Asia Limited.
NKF Bldg. 5F, 1-2 Higashida-cho, Kawasaki-ku Kawasaki-shi, Kanagawa Pref. 210-0005, Japan Tel: +81-44-246-9100 Fax: +81-44-246-9105
16, Li-Hsin Road, Science Park, Hsinchu, Taiwan, R.O.C. Tel: +886-3-5786688 Fax: +886-3-5632888
Taipei Office Macronix, International Co., Ltd.
Macronix Offices : Korea
Macronix Asia Limited.
#906, 9F, Kangnam Bldg., 1321-4, Seocho-Dong, Seocho-Ku, 135-070, Seoul, Korea Tel: +82-02-588-6887 Fax: +82-02-588-6828
19F, 4, Min-Chuan E. Road, Sec. 3, Taipei, Taiwan, R.O.C. Tel: +886-2-2509-3300 Fax: +886-2-2509-2200
Macronix Offices : China
Macronix (Hong Kong) Co., Limited.
Macronix Offices : Singapore
1 Marine Parade Central, #11-03 Parkway Centre, Singapore 449408 Tel: +65-6346-5505 Fax: +65-6348-8096
702-703, 7/F, Building 9, Hong Kong Science Park, 5 Science Park West Avenue, Sha Tin, N.T. Tel: +86-852-2607-4289 Fax: +86-852-2607-4229
Macronix Pte. Ltd.
Macronix (Hong Kong) Co., Limited, SuZhou Office
No.5, XingHai Rd, SuZhou Industrial Park, SuZhou China 215021 Tel: +86-512-62580888 Ext: 3300 Fax: +86-512-62586799
Macronix Offices : Europe
Macronix Europe N.V.
Koningin Astridlaan 59, Bus 1 1780 Wemmel Belgium Tel: +32-2-456-8020 Fax: +32-2-456-8021
Macronix (Hong Kong) Co., Limited, Shenzhen Office
Macronix Offices : USA
680 North McCarthy Blvd. Milpitas, CA 95035, U.S.A. Tel: +1-408-262-8887 Fax: +1-408-262-8810
Macronix America, Inc.
Room 1401 & 1404, Blcok A, TianAN Hi-Tech PLAZA Tower, Che Gong Miao, FutianDistrict, Shenzhen PRC 518040 Tel: +86-755-83433579 Fax: +86-755-83438078
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
39


▲Up To Search▲   

 
Price & Availability of MX25L512

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X